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The results of measurements of the density in pulsed jets with large pressure mismatch 
are presented. Techniques for obtaining information about the local values of the density, 
based on measurements of the integral attenuation of a probe electron beam under specific 
conditions of nonstationary jet flow, are discussed. In estimating the consequences of 
pulsed directed emissions, very simplified flow schemes are, as a rule, studied. It is 
suggested that the flow field can be estimated either from relations and results of calcula- 
tions for stationary jets or models of flow from a spatially symmetric, instantaneously 
switched on, stationary source. Both approaches are approximate and must be refined when 
more reliable information about the character of the spatial distribution of the flow param- 
eters as a function of time is required. 

In [1-3] the results of an experimental study of pulsed gas jets, formed with starting 
pressure mismatch (P0/P=)'I0 s and pressure in the background space P~ ~ i0 -~ mm Hz, are 
given. The density field of nitrogen and argon jets in the process of flow development 
are constructed based on measurements of the integral absorption of an electron beam. Data 
on the motion of the front of the jet and the characteristics of how the background space 
is filled with the gas jet formed were obtained. 

By measuring the integral attenuation of an electron beam it is possible to obtain 
information about the maximum sensitivity of the diagnostics apparatus under conditions 
when other methods of local diagnostics of rarefied flows become problematic. At the same 
time, the determination of the local value of the density based on data on integral absorp- 
tion, which, when the geometry of the flow is known a priori (in view of its symmetry), 
reduces to the solution of Abel's equation [4-6], is a difficult problem. 

Analysis of the character of the primary experimental data and the results of previous 
calculations showed that the distribution of the density in the pulsed jets studied can 
be described analytically based on the experimental data. 

Figure la shows typical oscillograms of the absorption of an electron beam (the x axis 
is oriented along the jet away from the nozzle cutoff and the y axis is oriented perpendi- 
cular to the axis of the jet, $ marks the onset of absorption, and c marks the attainment 
of the quasistationary state). In the experiments only the variable component of the beam 
current was recorded; this made it possible to increase substantially the accuracy of the 
measurements. Figure Ib shows the probing scheme. 

Since in the experiments the axisymmetric flow is probed along a chord in order to deter- 
mine the density, the relation between the density at a point with coordinates (y, 6) in 
a Cartesian coordinate system (or with the coordinate r in the polar coordinate system; 
see Fig. ib) and the value of the absorption along the chord Yi is given by 

~ (1 )  ( F (y) = 2 J 9 d~. 
0 

The substitution of variables r 2 - y2 = 62 reduces the relation (i) to Abel's equation 

R 
p (r) r dr 

F ( y ) = 2 y  g r  2 Z y  2' (2)  
Y 

(R is the radius of the boundary of the jet). 
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is the solution of Eq. (2) [7]. The character of the arrangement of the measured wdues 
of the absorption gives a basis for approximating the measured values by a two-parameter 
function of the form F(y) = de-bY 2 for y > R. In accordance with the physical meaning of 
the problem, for y e R we have F(y) = 0, if R is chosen so that the absorption of the probe 
beam for y ~ R is equal to the absorption in the background gas, i.e., the measured signal 

iae-bY 2, y < R 
F(y) = [ O, y ~ 0 in Eq. (3) gives 

a"V~ ~ ( ~ )  e-br2, (4)  p (r )  = - - ' E - -  

ie-t2/2dt [~(x) > 0.95, if x > 2]. In our case 
2 

where ~ is the error function ~(x) - ]/~ 0 

r  2 - -  r2)) ~ 1,  b = ( R  e - -  r e ) > 2 .  (5) 

We now introduce the maximum sensitivity of the measuring apparatus A = ae-br2max 
and define in terms of it 

2 = - g - I n  ( 6 )  rmax -~-. 

I f  R 2 > 1/b in  ( a / A )  + ( 2 / b ) ,  which f o l l o w s  from Eqs. (5)  and (6), based on Eq. (4)  we 
obtain 

a]/~ e_br2 p(r) = - ~ -  . (7)  

I f  F (y )  = ae-by2~ 0 ~ y < ~, i s  used as a smoothing f u n c t i o n ,  i . e . ,  the requi rement  F(y)  = 
0 f o r  y 2 R is  ignored,  then Eq. (7) i s  an exact  s o l u t i o n  of  gq. ( 3 ) ;  t h i s  can be v e r i f i e d  
by d i r e c t  s u b s t i t u t i o n  of  gq. (7) i n t o  gq. ( 3 ) .  The nonzero va lues of  the d e n s i t y  g iven 
by such an approximation for any argument are justified by the specific nature of the exper- 
imental results being analyzed. 

The real density for y > R is actually not equal to zero. Apart from the background 
gas, the effusing gas is always present behind the formal boundary of the jet because mole- 
cules are separated in the process of effusion [8] and because the boundary of the jet is 
not sharp. 

The approximations examined above have certain "flaws" of different mathematical nature, 
but they give solutions of the same form, so that any approximation studied is acceptable. 
Satisfaction of the conditions (5) will be checked after the parameter b is determined. 
To determine a and b we will use the method of least squares (MLS), according to which these 
parameters can be found based on the set of values of the absorption (FI...F n) by solving 
the system of equations 

O S_S = 0 ,  aS _ 0 S =  a e  - @ ~ - F i  . (8)  
~a Ob 

{=1 
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From the starting equations, after substitution and reduction of the system to one equation 
for one unknown, we write 

_ 2 2 b2 
~iY ie , ( 9 ) y i e  

{=1 i=I i = l  { = 1  

- - b y  i - - 2  Yi  
where  a = F~e e . I t  i s  o b v i o u s  f rom Eq. (9)  t h a t  d i f f e r e n t  measurements  F i 

{ = 1  i 

have  a d i f f e r e n t  w e i g h t .  As t h e  a rgument  Yi i n c r e a s e s  t h e  w e i g h t  d e c r e a s e s ,  so t h a t  f o r  
s u f f i c i e n t l y  l a r g e  v a l u e s  o f  t h e  a rgument  t h e  measurements  do n o t  a f f e c t  t h e  r e s u l t  and 
a r e  t h e r e f o r e  u s e l e s s .  

The t h e o r y  o f  t h e  method of  l e a s t  s q u a r e s  recommends,  f o r  p u r p o s e s  o f  s i m p l i f y i n g  t h e  
s o l u t i o n  and based  on some f u n d a m e n t a l  c o n s i d e r a t i o n s ,  t h a t  t h e  s y s t e m  of  e q u a t i o n s  be r e -  
duced by means o f  a p p r o p r i a t e  t r a n s f o r m a t i o n s  t o  a l i n e a r  form [ 5 ] .  Once t h e  sys t em (8)  
i s  l i n e a r i z e d ,  we f i n d  t h e  c o e f f i c i e n t s  a and b by t a k i n g  t he  l o g a r i t h m  and p e r f o r m i n g  t h e  
r e q u i r e d  t r a n s f o r m a t i o n s .  From Eq. (7)  ( t a k i n g  i n t o  a c c o u n t  t h e  p h y s i c a l  c h a r a c t e r i s t i c s  
o f  t h e  gas  u n d e r  s t u d y )  we o b t a i n  t h e  v a l u e  o f  t h e  d e n s i t y  as  a f u n c t i o n  o f  t h e  r a d i a l  
c o o r d i n a t e .  

For  a l l  r eg imes  r e a l i z e d  in  t h e  e x p e r i m e n t ,  t h e  v a l u e s  o f  b f a l l  i n t o  t h e  r a n g e  0 .05  
b g 0 .2  and t h e  r a t i o  a/h  f a l l s  i n t o  t h e  r a n g e  30 g a/5 g 100, in  a c c o r d a n c e  w i t h  which 
R = 7 .75  cm. In  t h e  e x p e r i m e n t s  t h e  a b s o r p t i o n  was r e c o r d e d  r e l i a b l y  f o r  rma x ~ 7 . 5 ;  f o r  
l a r g e r  v a l u e s  t h e  a b s o r p t i o n  was e q u a l  t o  z e r o .  T h e r e f o r e ,  an a p p r o x i m a t i o n  o f  t h e  form 
F ( y )  = ae -bY 2 i s  w e l l - f o u n d e d  in  t h e  e n t i r e  r a n g e  0 g y < ~. Th i s  a p p r o x i m a t i o n  a g r e e s  
w i t h  t h e  p o s s i b i l i t i e s  o f  t h e  measurement  method and i t s  a c c u r a c y  i s  a t  l e a s t  as  good as 
t h a t  o f  t h e  m e a s u r e m e n t s ,  which  i s  d e t e r m i n e d  by t h e  s e n s i t i v i t y  o f  t h e  a p p a r a t u s .  Obvi -  
o u s l y ,  t h e  methods  o f  e l e c t r o n - b e a m  d i a g n o s t i c s  unde r  c o n d i t i o n s  o f  p u l s e d  j e t  f l ows  w i l l  
be more e f f e c t i v e  i f  m u l t i a s p e c t  and mul t i~eam p r o b i n g  i s  employed;  in  t h i s  c a s e ,  t h e  p o s s i -  
b i l i t y  o f  u s i n g  an a n a l y t i c a l  a p p r o x i m a t i o n  g r e a t l y  s i m p l i f i e s  t h e  p r o c e s s i n g  of  t h e  e x p e r -  
i m e n t a l  d a t a  and makes i t  p o s s i b l e  t o  a u t o m a t e  t h e  p r o c e s s i n g .  

We p r e s e n t  below s p e c i f i c  examples  o f  t h e  a n a l y s i s  o f  e x p e r i m e n t s  and c o m p a r i s o n  of  
the experimental results with the results of numerical calculations using a graphical ap- 
proximatio n of absorption. Figure 2 shows the beam-absorption data obtained in one section 
of an argon jet at an obviously nonstationary stage of the flow. The measurements were per- 
formed along seven chords; the total number of points is equal to 24. For the analysis we 
chose the section in which irregularity in the measured quantities is clearly manifested 
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because the measurements were made far enough away from the nozzle cutoff and because the 
time from the start of effusion was comparatively short. The curve 1 shows the approxima- 
tion of the experimental values directly; the curve 2 is drawn through the arithmetic mean 
of the experimental values; and, the curve 3 is an approximation curve, constructed based 
on the arithmetic-mean values. The fact that the curves 1 and 3 do not coincide reflects 
the effect of the different weight of the points in the regions of the flow near tile axis 
and at the periphery. In Fig. 2 one can see that the approximation relations introduce 
a correction to the arithmetic mean values, determined differently for each Yi" The values 
at the maximum are too low and beyond the point of inflection they are too high compared 
with the arithmetic mean values. The maximum difference in the density is 7% (Fig~ 3). 
Comparing the results obtained using the analytical and geometric methods of approximating 
the experimental data shows that in the second case the density drops more rapidly at the 
periphery. This occurs because the computational method presupposes that a boundary is 
introduced on which the absorption signal is equal to zero: There is no effusing gas beyond 
r e R. In reality, however, the boundary of the jet is not sharp, both because of diffusion 
and interpenetration of the gases of the jet and of the background space as well as, as 
pointed out above, owing to the separation of the molecules of the effusing gas in the zone 
near the front. The asymptotic decay of the absorption described by F = a e -br2 best cor- 
responds to the physical picture of the process. 

Figure 4 illustrates another experiment in which an analytical smoothing function was 
constructed and the corresponding density distribution was determined. Here data for a 
nitrogen jet in the section x = 2 cm are compared; the measurements were performed 40, 75, 
100, and more than 250 ~sec after effusion starts. Curves of the density distribution were 
constructed from the smoothed functions approximating the values of the absorption. From 
75 to 100 and 250 Dsec: the density in the region near the axis increases smoothly. At 
the periphery of the jet (r > 5) the absorption is small; for all times it is close to the 
limit of sensitivity and the density (for r > 5) is virtually constant. For 40 Dsec the 
density on the axis is 1.5 times higher than at later times; the density drops more rapidly 
at the periphery. It can be conjectured that the demonstrated character of the change in 
the density is connected with the formation of vortex structures, analogous to those ob- 
served at the initial stage of development of pulsed jets, effusing into a space with a 
higher counterpressure [2]. 

Comparing the absolute and relative values of the density, found in experiments for 
quasistationary flows of different gases, reveals a tendency manifested in model calcula- 
tions of jets effusing into a vacuum: the argon jet is narrower and has a longer range 
than the nitrogen jet. 

Comparing the methods used previously [I-3] and the methods presented in this paper 
for processing the experimental data, it is useful to note that the evolution of the density 
field, obtained by analyzing the measurements of the integral attenuation of a beam, is 
qualitatively the same in both cases. The quantitative discrepancies are largest where 
the spread in the measurements is maximum; the maximum spread is unique. The reliability 
of the density values found from experiments on integral absorption cannot be predicted 
a priori independently of the method used to extract this information. By regularizing 
the measurements geometrically, we obtain information directly and we avoid the mathemati- 
cally difficult step of fitting a function which gives the best description of the actual 
coordinate dependence of the absorption. But the existence of natural irregularities and 
the random spread in the measurements unavoidably introduce distortions into the reconstruct- 
ed density function p(r), and since p(r) is unknown, both the scale and the character of 
the distortions are unpredictable. Solving Abel's equation numerically does not save the 
situation, although in so doing the unaveraged, practically primary results of the measure- 
ments are employed. 

Analytical approximation is preferable because it is simpler and it makes it possible 
to automate the processing of the measurements directly in the course of the experiment. 
Analytically described results are more convenient to analyze for further scientifc 
and applied use. 
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SYMMETRIZATION OF THE EQUATIONS OF DYNAMICS OF A CAPILLARY LIQUID 

L. K. Antanovskii UDC 532.68 

A model of the motion of a nonisothermal capillary liquid in the presence of surfact- 
ants at low concentration is described. A symmetric form of the equations in the intensive 
variables temperature-chemical potential is derived based on fundamental principles of 
thermodynamics. 

From the mechanical standpoint, capillary forces are internal forces and the problem 
of determining them is a problem in the rheology of a multiphase medium. The main difference 
between such a continuous medium and classical liquids is that in the phase mixing layer 
the stress tensor is anisotropic (Pascal's law is not satisfied). The thickness of the 
mixing layer is equal to several intermolecular distances and it remains virtually constant 
during the motion of the liquid. For this reason, it is natural to model this layer as an 
interphase surface F with distributed excess thermodynamic quantities e (internal energy), 
n (entropy), and 7 (concentration of surfactant molecules), making the assumption that the 
layer is an open thermodynamic system in contact with volume phases - a reservoir of heat 
and surfactant particles. This approach of Gibbs makes it possible to circumvent the com- 
plicated question of the structure and thickness of the phase mixing layer and to use more 
efficient thermodynamic methods [i]. 

The postulated principle of local thermodynamic equilibrium leads to the condition 
that the intensive parameters 8 (absolute temperature) and ~ (the chemical potential of 
the surfactant), which are characteristics of the reservoir, are continuous. This condi- 
tion makes it possible to extend the relations of equilibrium thermodynamics or thermo- 
statics to nonstationary processes involved in the dynamics of an interphase boundary. Here 
the principle of minimum entropy production is very important. This principle must be used 
in order to construct the correct relation between the heat flux q and the flux of surfact- 
ant molecules j and the gradients of 8 and ~ [2]. 

i. Thermodynamics of the Interphase Boundary. Consider a closed thermodynamic system 
consisting of two phases separated by a uniform interphase surface of area A. Let E be 
the total energy of the system, N be the number of surfactant molecules, S(E, N) be the 
entropy of the volume phases, and An(e, 7) be the excess entropy of the surface. According 
to the principle of maximum total entropy S(E - AE, N - AT) + An(e, 7) § max in the approx- 
imation AE ~ E, A 7 << N (the reservoir is much larger than the system in contact with it) 
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